18,472 research outputs found

    Copyright and Promotion: Oxymoron or Opportunity?

    Full text link
    Copyright in the cultural sphere can act as a barrier to the dissemination of high-quality information. On the other hand it protects works of art that might not be made available otherwise. This dichotomy makes the area of copyright difficult, especially when it applies to the digital arena of the web where copying is so easy and natural. Here we present a snapshot of the issues for online copyright, with particular emphasis on the relevance to cultural institutions. We concentrate on Europe and the US; as an example we include a special section dedicated to the situation in Italy.Comment: 10 pages, 0 figure

    Quantum metrology and its application in biology

    Full text link
    Quantum metrology provides a route to overcome practical limits in sensing devices. It holds particular relevance to biology, where sensitivity and resolution constraints restrict applications both in fundamental biophysics and in medicine. Here, we review quantum metrology from this biological context, focusing on optical techniques due to their particular relevance for biological imaging, sensing, and stimulation. Our understanding of quantum mechanics has already enabled important applications in biology, including positron emission tomography (PET) with entangled photons, magnetic resonance imaging (MRI) using nuclear magnetic resonance, and bio-magnetic imaging with superconducting quantum interference devices (SQUIDs). In quantum metrology an even greater range of applications arise from the ability to not just understand, but to engineer, coherence and correlations at the quantum level. In the past few years, quite dramatic progress has been seen in applying these ideas into biological systems. Capabilities that have been demonstrated include enhanced sensitivity and resolution, immunity to imaging artifacts and technical noise, and characterization of the biological response to light at the single-photon level. New quantum measurement techniques offer even greater promise, raising the prospect for improved multi-photon microscopy and magnetic imaging, among many other possible applications. Realization of this potential will require cross-disciplinary input from researchers in both biology and quantum physics. In this review we seek to communicate the developments of quantum metrology in a way that is accessible to biologists and biophysicists, while providing sufficient detail to allow the interested reader to obtain a solid understanding of the field. We further seek to introduce quantum physicists to some of the central challenges of optical measurements in biological science.Comment: Submitted review article, comments and suggestions welcom

    Air fluorescence detection of large air showers below the horizon

    Get PDF
    In the interest of exploring the cosmic ray spectrum at energies greater than 10 to the 18th power eV, where flux rates at the Earth's surface drop below 100 yr(-1) km(-2) sr(-1), cosmic ray physicists have been forced to construct ever larger detectors in order to collect useful amounts of data in reasonable lengths of time. At present, the ultimate example of this trend is the Fly's Eye system in Utah, which uses the atmosphere around an array of skyward-looking photomultiplier tubes. The air acts as a scintillator to give detecting areas as large as 5000 square kilometers sr (for highest energy events). This experiment has revealed structure (and a possible cutoff) in the ultra-high energy region above 10 o the 19th power eV. The success of the Fly's Eye experiment provides impetus for continuing the development of larger detectors to make accessible even higher energies. However, due to the rapidly falling flux, a tenfold increase in observable energy would call for a hundredfold increase in the detecting area. But, the cost of expanding the Fly's Eye detecting area will approximately scale linearly with area. It is for these reasons that the authors have proposed a new approach to using the atmosphere as a scintillator; one which will require fewer photomultipliers, less hardware (thus being less extensive), yet will provide position and shower size information

    Empirical Patterns in Google Scholar Citation Counts

    Full text link
    Scholarly impact may be metricized using an author's total number of citations as a stand-in for real worth, but this measure varies in applicability between disciplines. The detail of the number of citations per publication is nowadays mapped in much more detail on the Web, exposing certain empirical patterns. This paper explores those patterns, using the citation data from Google Scholar for a number of authors.Comment: 6 pages, 8 figures, submitted to Cyberpatterns 201
    • …
    corecore